
ADAO .98 WISCONSIN UNIVI4ADISON MATHEMATICS RESEARCH CENTER F/S 20/4
AN ENERGY METHOD FOR THE EQUATIONS OF MOTION OF COMPRESSIBLE VI--ETC(U)
MAR a8I A MATSUMURA. OAA629-B0-C-0041

UNCLASSIFIED MRCTSR2194 M-EjE~E



ANDHEA-CNDUTI E L FLUIDS

00

Mathematics Research Center
University of Wisconsin- Madison
61 0 Walnut Street
Madison, Wisconsin 53706 e

MarliliCt,

(Received February 3, 1981

VI /

Approved for public release
____ Distribution unlimited

Sponsored by

U. S. Army Research Office and National Science Foundation
P. 0.Box 2211Washington, D. C. 25505

Research Trianqle Park

North Carolina 27709

81 628 0



UNIVERSITY OF WISCONSIN - MADISON
MATHEMATICS RESEARCH CENTER

AN ENERGY METHOD FOR THE EQUATIONS OF MOTION
OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

*

AKITAKA MATSUMURA

Technical Summary Report #2194

March 1981

ABSTRACT

A priori estimates for solutions of the quasilinear hyperbolic-parabolic

equations governing the initial value problem describing the motion of

compressible, viscous and heat-conductive, Newtonian fluids are derived by

means of a new energy method. This technique enables us to simplify and unify

our previous results on the global existence in time and uniqueness of smooth

solutions of these equations for sufficiently smooth and "small" initial data

and to obtain their rate of decay.
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SIGNIFICANCE AND EXPLANATION

The motion of compressible, viscous and heat-conductive Newtonian fluids

is described by a system of partial differential equations which is of

hyperbolic-parabolic type and highly nonlinear. One of the first mathematical

problems associated with this system is the initial value problem. we obtain

the existence of a unique smooth global solution in time for the initial value

problem and also the decay rate of the solution as time tends to infinity.

Since the system is quasilinear with respect to the unknowns: density,

velocity and temperature, we need to assume that the initial data are close to

the constant equilibrium state. The purpose of this paper is to obtain a

priori estimates for the solutions of these equations by means of a new enerqy

method. This technique, although still necessarily laborious, enables us to

simplify and unify our previous results, described briefly in the abstract and

obtained jointly with T. Nishida (see, e.g. MRC TSR *1q91).
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AN ENERGY METHOD FOR THE EQUATIONS OF MOTION

OF COMPRESSIBLE VISCOUS AND HEAT-CONDUCTIVE FLUIDS

Akitaka Matsumura

41. Introduction and Main Theorem.

In previous papers [1], (2], we have investigated the global solution in

time of the initial value problem for the following equations governing the

motion of isotropic Newtonian fluids;

p+ (pu)x. = 0Pt
3

i(Ux + ) + 1u 1f i i1,2,3,
(.) u t+uu +- =-yx + u )X + x.j ) i ,23

+0 u j  1 + -!- )ic + T)t x. pc v  x pV x x..

3 3 V i

with the initial data

(1.2) (p,u,O)(0,x) = (P 1u0,U0)(x)

where t ) 0, x = (xX 2 ,x3 ) R3 , p is the density, u (u 1 2, u3) is the

velocity, e is the absolute temperature, p = p(p,8) is the pressure,

t = w(p,e) and p'(p,6) are viscous coefficients, K = c(p,0) is the

coefficient of heat conduction, cv = cv(p,
6 ) is the heat capacity at

constant volume, and T ' (u j + uk )2 + ', (Uj )2 is dissipationcontan volme and x =
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function. We shall consider the solutions only in a neiqhbourhood of any

fixed constant state (p,u,O) - (P,0,0) where p,8 are any positive

constants. Moreover, we shall make the following natural assumptions on the

hyperbolic-parabolic system (1.1) throughout this paper;

(i) P, c V , U, U' and K are smooth functions of 0 {(p,u,O) .Ip - pl,

lul, 16 - 61 < Y ,
(ii) 2

(ii) Pp OP' p , K > 0 and p' + ) 0 in 0,

where y0 < min(p,O).

In (11, we succeeded in obtaining a global solution in time of (1.1),

(1.2) by using energy methods which were rather technical and complicated

under the assumptions that the fluid is an ideal and polytropic gas and that

(P 0  - p, UP -0) is suitably small in H3

where Hk  represents the usual Sobolev's spaces with the norm 1111 k' We also

proved the decay of the solution to the constant state (p, 0, 9), but we

were not able to estimate the decay rate of the solution. In (21, we obtained

both the global solution in time of the original problem (1.1), (1.2) and its

decay rate to the constant state by using a calculation of the decay rate for

the linearized equations, together with the energy estimates. Moreover, we

had to investigate the precise properties of the spectrum of linearized

equations, and assume that

(P 0 - Pe u 0 ' 90 - 0) is suitably small in H n L
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The purpose of this paper is to employ a different energy method to

handle the nonlinearity. The present approach is simpler and less technical

than the energy form used in (11, moreover we do not require all of the

precise properties of the linearized equations obtained laboriously in (2].

However, we note that because of the relative roughness of the new method, the

coefficients of the various estimates might be more rough than those in [1]

and (21. By making use of this approach, we obtain both the existence of

global smooth solution in time as well as its decay rate to the constant state

for the general case (1.1), (1.2) under the assumption that

3(P0 - p , u 80 - 9) is suitably small in H

(the previous approach required H4 n L1 ). This method will be applied to an

initial boundary value problem for (1.1), (1.2) in a subsequent paper.

The main result is:

Theorem 1.1. Consider the initial value problem (1.1), (1.2) and suppose

3
the initial data (p0 - P, u0, 80 - 9) c H Then there exist positive

constants c. and C0  such that if 1p0 - p' u0 ' 00 - 9#3 < E0' the problem

(1.1), (1.2) has the unique global solution in time satisfying

- 0 3 1 2
P P C C (0, +; H) n C (0, + ; )

• - 0 H3 C1 1
(u, 80) C (0, + H 3) n C(0, + ; )

and

3

(1.3) sup I(p-p, U, 8 - )(t)l c0 (1+t) ;Ip0 _p '  u 0 , 00 - 3

x
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42. Proof of Theorem

First rewrite the problem (1.1), (1.2) by the chanqes of variables:

• + , f u + u, + + 8, p(p+p, 8+0) + p(p,O), jj(p+p, 6+6) - i(p,O) and

so on resulting in

j j
Pt + (P + P)u + uj P -

t x i Ii + u i + DP×+ __ 6ut x i +p xi

(2.1) -1 (p(u +u j ) + , k 6 iJ)

p-Y+ i X us x

Ux j (8+8) p u1

t  + 8 +j= 1 u ((Ke + T)
(p+p)c j (p+p )c x

(2.2) (P,u,9)(O,x) - (pot U0 " 80)(x)

Define a positive constant E0  bv the Sobolev's lemma so that for

1f112 4 E0 we have supifi < Clfn2 4 Y.. Denote

n kf = f/ 1 ax12axa 3  for all a, a + 3 = k) and define
1 2 31+ +a

11-1 110 0 . Then the solution of (1.1), (1.2) is sought in the set of

functions X(O, +-; E) for some E 4 E0, where for 0 < t 1 t2 4 +W,

1 2

x(t I , t 2 ; E) = (p,u,8) ; p £ C 0(t 1 , t2y H3 ) fl C1(t 1 , t 2 ; H2  ,

3 2 2 2
(1+t)D L t )

(u,)) C C ((tI ,1 t 2 ; 3) n C (ti p t2; H
3t 21 t/2  H 2

r)(u, ) E LI(ti, t 2 ; H 3), (1+t)2 D2 (u, ) cL 2 (ti, t 2: L)

L 2 ( 1
(I+t)r ( j,'3) L (t i , t ; ,

and 'Ct1 , t) E (E .
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We define N(t1, t2 ) by

2 2 2
N2 (ti, t 2 ) 2 SUp (I(p,u,)(t) 3 + t ID(pu,8)(tl + t

1I (t(t 2

22 2 3 2
2I pu,)tI) + f nDp(r)12  3
1 12+pnuu)()(t1llt1

+ RID 2(puO)(T) 2 + T2 (RD3 P(T) 2 + RD3 (u,e)(T)h I2)dT

We prove Theorem 1.1 by a combination of a local existence result and a priori

estimate for the solution in X.

Theorem 2.1. (local existence) Consider the initial value problem (2.1)

for t > t1 with the initial data at t t as

3
(2.3) (p,u,O)(t ) e H

Then there exist positive constants c1' CI(CI 1 E 0) and T which are

independent of t, such that if N(t1 ' tl) 4 cI' the problem (2.1)-(2.3) has

the unique solution

(p,u,0) C X(tI , t1 + T; C1N(tl,tI))

The proof of Theorem 2.1 is given in the same way as in I].

Theorem 2.2. (a priori estimates) Suppose that the initial value

problem (2.1), (2.2) has a solution

(p,uO) c X(,T; E)



for some T > 0 and some E 4 E Then there exist three positive constants
0

2
£2 and £3 (£2 'e3  

) and C (C2 £3 /1+C ( E ) which are independent of
2- 2 2 23 1 0

T such that if lip0'u0 '0 113 4£2 and E < £3' then the solution satisfies

the a priori estimate

(p,u,e) e X(0,T; C2 11P0 ,u0 ,1 113 ) .

Proof of Theorem 2.2. Take

e3 C1 C3
C0 = 12 C C2' /2 "ni n( 1 2 C ,1 2 C 2 1+ C 1

We may use the standard continuation arguments of a local solution on

[0,n-l, n = 1,2,... to get the global solution. In fact, by the local

existence theorem, the definition of c0 and the assumption

11P 'u0 n 3 3 4 F., we have a local solution

(p,u,G) c X(O,t; C1iiP0 ,u0,6011 3 )

Ry C('Upo'u0 3 r% C1E0 C.E 3 and IloeUo,1oI 3 < C2 , the a priori estimate

gives

(p,u,G) £ X(O,-r; C 2 11 ,u 0,e 0113)

Thpn by C 211,u0 (1 0 i 2q3 0 ( - I and the local existence theorem with

t1= T, we have again

C X( , 2T; C C 211p ,u 0 ,0 3)
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Noting that

N 2(0,2T) N 2(0,T) + N2 (r,2T)

we also have

(p,u,e) C X(0,2v C2  ipoUote0 3

Now by C /+C NP0,U0 1%13 4 C0 +/1+C1 c e the a priori estimate shows

that

(p,u,e) c X(0,2Ti C25p0 ,u0 ,1 3)

Thus we can continue to use the same arguments on [nT, (n+1)T] and

[0, (n+1)Tl successively n - 2,3,... . Finally the estimate (1.3) follows

from Nirenberg's inequality [31

1 3
4 2 4(2.4) suplP,u,81 ( CIP,u,@ 4 WD (p,u,O) 4

x

J3. A Priori Estimates

We present here an energy method to obtain a priori estimates for small

solutions of equations with dissipatin. First we rewrite the system (2.1) so

that all the nonlinear terms appear at the right hand side of equations;
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L 0 p + pu f
t xi

L u t + Pipx, 2 x x x ~l .x.
3. i ~Ji

(3.1)

4 i ~4
L +O 4-p -

t 3x. xix.

where

P, p p ~~~~ ~ ~ (0,0)/PP2 p 0()P 3 -p 00/p C v(0,0)

=k U(0,0)/p, Ui' = p'(0,0)/O, ic = (O,O)/P C (0,0)1
V

fo -Px - U3x.

- u ju ' + (Tp - p /(P+p)p + (p -p /(p+P))9 +
x. 1 P X, 2 0 X.

3 3

+ (vi p + Vi 0 a)( u x+ u x)/(P+p) +

+ (ip + jjOO )ui /(p4-p) 4- U/(-P+p) - j)u +
px1  x . x*x.

+ ((x+~'/pp - (x+i')

and

f u x + (p 3 (6+6)p 6/(P+p)C v)II + (K p x+ K0 X.)69 /(P+P)C-

ii

Define, for k, X, m = 0,1,2,3,

p P3

B(t) D P f * D + -s- D f * D0 p dx

x i i 20 V1

p(t r)2 -- u *Df d (x
x



Then we have the following:

Lemma 3.1. There exist positive constants v and C which are independent

of t such that

Dk D (p,u,8)(t)N 2 + v ft Dk+ (ue)()2 d

4 C(RDk (POouo) 2 + ft IAk(TfldT)' 0 4 k < 3

(ii) m  RD m (t)v 2 + t f RDmp(T)a2 d n

C m 2 rn-i 2 2

< C(D02 + ID U0 11 + D m-u(t)l +

+ ft ID m(u,O)(r)ll2 + iB M-(T)I + ICm- (T)IdT), 1 < m < 3

(iii) t 1D k(p,u,e)(t)I2 + v f T IID'+ (u,6)(T)I2 dT

SC( ft T L D(puO)(t)l + IT A k(T)Idt), Z = 1,2, k = 1,2,3

(iv) t 11D m(t) 2 + V rXD m (T)I dt (

X rn-i 2 t X-i rn 2 X-1 rn-i 2
< C(t lID u(t)I + f0 T-C 1ID p(t)2 + T IW u(t)U +

+ T11Dom(uO)(T)D2 + IT C M-1(T)i + ITX B m-1(T)dT,

= 1,2, k 2,3

-9-



Lemma 3.2. There exist a positive constant C which is independent of t

such that

2 2 ft 2 t.2
(3.2) N (0,t) < C(1100,u ,e 0 1 + ~0 L(1+T )(IA (Tfl + lB (T)I +0 030

+ ICk(T)I) + (1+T2 )A3(T)Id ) .

Proof of Lemma 3.1. For W k  and (iii) ,k, we may estimate the equality

t l k k i k i P2k 4 kf T X - D k(L 0 ) D p + D (L) D U + - D (L ) * Dke dxdT
0 

p3

=ft TXA k( T~dT,

which imp]ipq after integratinq by parts

z Pi k 2 1 k 2 P2  k 
t= t

t f IDkPI + - IDkul +2- ID eldxt +
2p2 1p 0

ft t uInk+'ul 2 + (U+U,)IDkuJ 12 + P 2 T ZDk+1@12dxdT

Xi P3

0 P1  k 2 1 k 2 p2  k
'0 rt i-1(1-6£0) f - ID pl + - ID ul + - ID el2dx +

2p 22p3

+ T A k(T)dT ,

.i , J
wherf, S represents Kronecker's delta. These inequalities prove (i)k

and (iii) easily.

Next for (ii) m and (iv) zmwe may estimate the equality

-10-



D f (L Dm - 1  + . Dm-l(L i) D m- 1  dxdT

=ft TIBml (T~

which implies after integrating by parts

2 It
2 2 +l' i two

2 + P2 D m - 1 m-1

2+ I 2+' x i x i

- P IDm-1u I 2dxdT =
xi

= T £1-1 (1-6't£) f Irn1 2 + , D mu i . Dmop dx +fo 2

+ C m'1t()T I Bm- (t)-r dT

These equalites imply (ii)m and (iv)m L,m"

Proof of Lemma 3.2. For any positve constant E > 0, consider the form

3 33(i~~k + e2(iii + E ii34-~ (iv)
(3.3) . (1lk + C ( )m + E ( 1,1 1,2

k=O m=1

E 4(1i) 2,2 C (iv)2,3 (iii)2,3

By taking c suitably small in (3.3), we can easily prove (3.2) by (3.3).

Next let us estimate the nonlinear terms.

-11-



Lemma 3.3. Suppose (p,u,O) e X(0,T; E) for some E 4 V" Then, for any

positive constant c, there exists a positive constant C(c) which is

independent of t such that

22
fo [ ('+"T M) IA (Tr)l +  IB (LT')l +  IC (.0 I) +  (1+-r2)A 3(+)d-r
Z=0

4 c N 2(0,t) + EC()N 2(0,t)

Before proving Lemma 3.3, we note that Lemmas 3.2 and 3.3 easily imply

the desired a priori estimates. In fact, we may first choose £ so small and

next choose E so small that we have

22 frE&£

N 2(0,t) < Chp 0 ,u0 ,0 I3 for E £
0 32

Proof of Lemma 3.3. Because there are many terms to estimate, we oick up some

examples. The remaining terms will be estimated in the same way. First let

us pick up

(3.4) ft f f0 p dxdT

in ft A0 (T)dT. By using Nirenberg's inequality (2.4) efficiently we estimate

(3.4) as follows;

tr f0 0 x, f 2uj u X
.r0 ffddl=l 0 f u - ~0 x.'d

2

- ft P - u3 dxdTl

-12-



x 5 
3

4 C ftIp,4 Dul r)2 p14 c1T
0 2

1 1 3
< CE( UP0,2 ) 8(s (1+ )U M12)2 (su(1+)2l 2l2)8

T T

5

ftJ (,+T) 4d

2

4 CEN 2(Olt)

Next let us consider the quantity

(3-5)~J ftf D3(p)J X. D 3p dxdr
J

inrinq in 2 A 3 (T)dT o T 2B 2(T)dT .We estimate (3.5) as follows;

(3.5) - ft fj 2(p ul + pui ) cx dxdT
0 X i x x kx xm Xxkxm

ftr f T 2u jD 3 p D D3p + 3T 2p u~ p +0 1 ~~x jx kx 9x .* xx

2 j2 3j1 3
+ 3T P kxI U x kx zx + Tp xD u *D p+

+ T (D 3p * D 3p)uj + 3T2 p u p +

2 z. 2 3 j 3
+ 3Tp P ju Xxm p Xkxim+ T P 0U .*Dp dxdr

11 2 +13 +14 +15 +16 +17 +18

-13-



2 2 dxdT

0J x 23 2

C 2 3 2 (2 2

- o I IDU da

N2 (,t) C t 2 (f(D201
4 dx )2 (f Ip2U1

4 dx)2 d r

2 C 2t 2 D2 2 2 2

N (Ot) + E0 1 1

N2 (O,t] + 2 (I2p(1+ 2 )1102 p12 (sup(1+r2 ,2u U 2) x

t  2 (1T
2 'dt

2 t 1 T 2 2d

N2(0,t) + C IEE N2 (Ot)

IT31! 1141, 1IC1 and I6 I are estimated in the same way as lI,

2 p D-D33p • D dxdT

0 x

1 3

2t t2 2 -I 2 2 2 3 2

7

2 E- IN2 (Olt) f .~o t T 2 (1+7) 2 d-
S (n,t) + CEF o 0" 2 ° t  (+ a

-14



4 N 2(O,t) + C(£EN 2(O,t)

Proceeding in this manner proves Lemma 3.3.
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